Al for Software Testing

14 PMIPDUs | 14 IIBA CDUs

Marc
Balcer

Format: Live Instructor-Led
Online through Zoom

Date: June 8 - 10, 2026

Time: 12:00 PM - 4:30 PM EDT
Price: $650 per person

To register:
Email Chris Remmert
cremmert@nysforum.org

and indicate the course
title in the subject line.

Technology and
Attendance
Requirements:
Computer with a
browser, Zoom, a
microphone and
speaker. For this
workshop, camera
should be on if possible
and you must be
actively participating.

Al for Software Testing is a practical, hands-on course for
experienced testers who want to integrate generative Al into real
testing work—responsibly and effectively. Rather than treating Al
as a testing replacement or a standalone skill, the course positions
Al as a collaborator that supports testing judgment, not a substitute
for it.

You will work with a small, realistic application and use Al
throughout the course to explore how it can assist with
understanding system behavior, generating and refining tests,
structuring test ideas, exploring features, reporting defects, and
making informed decisions about automation. Al output is treated
as input for evaluation, not as authoritative answers.

Throughout the course, you will engage in realistic exercises that
reflect how testers actually work: observing behavior, forming
hypotheses, designing tests, and refining understanding as
information emerges. You will use Al to generate test ideas and
explanations, then examine those outputs for assumptions, gaps,
executability, and risk. The emphasis is not on producing more tests
faster, but on learning how to guide, question, refine, and integrate
Al-generated material into sound testing work.

By the end of the course, you will have a grounded understanding
of where Al adds value in testing, where it creates risk or noise, and
how to maintain tester accountability while benefiting from Al's
speed and flexibility. The course is designed for testers, test
analysts, and test leads who want to adopt generative Al in a
professional, experience-based way—improving decision-making
without compromising rigor or responsibility.

Why this course

This course stands out because it teaches experienced testers how
to use generative Al as part of real testing work, not as a shortcut
or a novelty. Instead of focusing on Al theory, tool features, or
certification checklists, it follows the natural flow of testing—from
observing behavior and forming understanding, through test
design, exploration, defect reporting, strategy, and automation—
showing where Al helps, where it fails, and how testers stay in
control.



Al for Software Testing

14 PMIPDUs | 14 IIBA CDUs

The emphasis is on judgment, evaluation, and
accountability. You learn how to review Al-
generated tests critically, uncover hidden
assumptions, decide what is runnable and what
is not, and integrate Al suggestions into
coherent testing approaches. This makes the
course directly applicable to day-to-day testing
work in a way most Al training does not.

Certification

This course will contribute 14 PMI® Professional
Development Units (PDUs) towards your chosen
certification (14 Business Acumen).

g

xy
AIFOR
SOFTWARE
TESTING

ccccccccccccccccccccc

An Al for Software Testing digital badge will be
available upon successful completion of the
course from SoftEd.

Great for:

o Testers, Test Analysts and Developers
wanting to utilize Al to automate and assess
testing tasks and artefacts

» Project Managers, Business Analysts and
leaders wanting to accelerate the testing
process whilst balancing responsible and
ethical oversight

« Anyone looking to be skilled in Al
augmentation and innovation

Learning Outcomes:

1.Use generative Al to explore and understand
system behavior when documentation is
incomplete or unclear.

2.Write prompts that describe observed
behavior, constraints, and test intent clearly.

3.ldentify assumptions, gaps, and invented
details in Al-generated test cases.

4.Turn Al-generated test ideas into executable
tests with clear steps and observable
outcomes.

5.Structure tests using partitions, boundaries,
state, and sequences with Al support.

6.Use Al to generate exploratory testing ideas
without losing tester control or focus.

7.Evaluate Al-generated nonfunctional test ideas
for relevance and testability.

8.Write clearer bug reports and evaluate Al-
assisted summaries and metrics.

9.Make informed decisions about what to
automate and what not to automate.

10.Create a practical plan for integrating

generative Al into your own testing work.

Prerequisites

To get the most out of this course, it is
recommended that participants have foundational
knowledge of software testing through formal
training like our Software Testing Foundations or
Agile Testing course or have relevant experience
working in a software testing context.



Al for Software Testing

14 PMIPDUs | 14 IIBA CDUs

Content:

Module 1 — Understanding Al's Role in
Software Testing

Begin by exploring what generative Al actually
does and how it applies to software testing in
practice. You will compare outputs from
different Al tools, observe how confident-
sounding responses can still be incomplete or
incorrect, and examine how Al changes testing
work—not by replacing tester judgment, but by
accelerating certain activities. This module
establishes Al as a collaborator whose output
must be evaluated, challenged, and corrected.

Objectives

« Describe the typical capabilities and
limitations of generative Al in software
testing.

« Distinguish between plausible-sounding
output and testable information.

» Evaluate Al responses for accuracy,
completeness, and relevance.

« Reflect on how Al changes tester
responsibilities and decision-making.

Exercise

Reflect on your role as a tester, including your
core activities, the artifacts you create, the
inputs you receive, and the different
perspectives that best fit your work. Then
explore how Al could support you in that role.
This involves writing a clear prompt that
describes your work, inputs, outputs, and
perspective, then asking how Al might help.
Compare responses from multiple chatbots and
use follow-up questions to refine and deepen
the results.

Module 2 — Let’'s Test!

Jump directly into test development by asking
Al to generate test cases with minimal context.
Attempt to execute those tests and discover
where Al output helps, where it breaks down,
and where assumptions have been silently
introduced. By comparing results from
different Al tools, you will learn to recognize
the difference between tests that appear
reasonable and tests that are actually
executable and grounded in observed
behavior.

Objectives

« Observe how Al generates test cases with
limited information.

 |ldentify hidden assumptions and invented
details in Al-generated tests.

« Recognize the difference between test
appearance and executability.

» Critique and compare test outputs from
multiple Al tools.

Exercise

Starting with little more than an image of a Ul
page or a short general description have Al
generate a series of test cases for that page.



Al for Software Testing

14 PMIPDUs | 14 IIBA CDUs

Content:
Module 3 — Tests as Specifications

Al was able to generate tests from little more
than a snapshot of a Ul. In this module, you
work in the opposite direction: using tests and
observed behavior to infer requirements and
business rules. You will examine how Al fills
gaps with assumptions, learn to separate
confirmed behavior from speculation, and use
requirement taxonomies to organize and
correct Al-generated statements. The focus is
on requirements as testable descriptions, not
authoritative truths.

Objectives

« Infer requirements and business rules from
observed system behavior.

« Separate confirmed behavior from
assumptions and speculation.

« |dentify and correct inaccuracies in Al-
generated requirements.

« Organize requirements using established
taxonomies to reveal gaps.

« Use Al to assist with traceability while
maintaining tester judgment.

Exercise

Ask your Al chatbots to enumerate the
requirements implied by the test cases. Are
any of the requirements wrong or unclear?
Prompt to correct them. Select one of the
requirements classification taxonomies. Use Al
to classify the requirements according to that
taxonomy. Ask Al to construct a traceability
matrix relating test cases to requirements.

Module 4 — Test Data

Real test cases require more than placeholder
phrases such as “enter a valid value.” They
require meaningful data choices that support
coverage. In this module, you use equivalence
partitioning and boundary value analysis as
thinking tools to structure input domains and
identify important conditions. Al is used to
suggest partitions and boundaries, which you
then evaluate for relevance, assumptions, and
completeness before selecting representative
data values.

Objectives

« Explain the role of test data in effective test
coverage.

« Apply equivalence partitioning to group
valid and invalid input conditions.

« Apply boundary value analysis to identify
edge conditions.

« Distinguish between partitions based on
observed behavior and those based on
assumptions.

« Define preconditions and data
dependencies explicitly.

Exercise

Have Al review and update the mileage
calculator tests using equivalence partitioning
and boundary value analysis. Define
equivalence partitions for each input and
identify boundary values for each partition.
Have Al generate real data values for the
inputs and identify any necessary pre-existing
data.



Al for Software Testing

14 PMIPDUs | 14 IIBA CDUs

Content:
Module 5 — Making Tests Executable

What does it actually mean for a test case to
be executable? This module focuses on the
information required for another tester to run a
test without interpretation. Use Al to refine test
cases to include clear steps, concrete data,
and observable outcomes. Al is used to
suggest improvements and rewrites, but
emphasis is placed on recognizing what Al
cannot infer and where human clarification is
required.

Objectives

« ldentify the information required to execute
a test reliably.

« Rewrite test cases to remove ambiguity
and interpretation.

» Define observable outcomes that support
clear pass/fail decisions.

» Evaluate Al-generated edits for
completeness and realism.

« Recognize details that Al cannot infer
without domain knowledge.

Exercise

Have your chatbots review the test cases
generated in the last exercise to evaluate
whether or not they are clear and consistent
enough to be run without interpretation. Ask Al
to improve the tests by adding details and
clear instructions. Then have Al translate these
tests into Gherkin Given-When-Then notation.

Module 6 — Stories and Scenarios

User stories describe changes to a system, and
acceptance criteria define the conditions under
which those changes are considered complete.
In this module, you examine how acceptance
criteria, scenarios, and test cases relate in
practice. You will explore the many-to-many
relationship between them and use Al to draft
and refine acceptance criteria while ensuring
that scenarios remain grounded in realistic
system behavior.

Objectives

« Review the purpose and structure of user
stories.

« Understand the relationship between
acceptance criteria, scenarios, and test
cases.

« Recognize that acceptance criteria and
scenarios map many-to-many.

« Use Al to draft acceptance criteria and
scenarios critically.

« |dentify gaps and overlaps between stories,
criteria, and tests.

Exercise

Given a set of user stories, collaborate with Al
to define the acceptance criteria for these
stories. Then have Al write (new or enhanced)
scenarios and test cases for these stories. Try
testing each story independently and in
combination. Finally, have Al create a mapping
table between stories, acceptance criteria, and
scenarios / test cases.



Al for Software Testing

14 PMIPDUs | 14 IIBA CDUs

Content:
Module 7 — States and Coverage

Although tests for single pages and functions
are a good start and can catch a lot of bugs,
eventually we'll need to test larger units of
functionality. These can be abstracted as
different states and visualized graphically.
Learn state-based thinking as a way to model
sequences, transitions, and cumulative
effects. Use Al to help sketch state diagrams
and identify valid transitions, then reason
about functional coverage in terms of states,
transitions, and invariants rather than test
counts.

Objectives

« Understand the importance of state and
sequence in system behavior.

« Model system behavior using states and
transitions.

« Identify valid and invalid transitions
between states.

« Reason about functional coverage using
states, transitions, and invariants.

« Use Al to assist with modeling while
validating accuracy manually.

Exercise

Use your chatbots to create a state model
illustrating the different states of the sample
application and the behaviors that cause
transition from page to page. Use Al to
determine if the test cases from the last
exercise fully cover the paths through that
state model. If not, what tests need to be
added? As a bonus, have Al generate a Ul
navigation map for an extended version of the
application.

Module 8 — Validating Quality Attributes

Functional correctness is not enough. Systems
must also meet quality expectations such as
usability, accessibility, performance, and
security. Use Al to evaluate nonfunctional
requirements and to convert these from vague
aspirations into solid testable objectives.
Design tests that ensure systems meet quality
criteria essential for user satisfaction and
system reliability

Objectives

« |dentify relevant nonfunctional
requirements for a given system.

« Distinguish testable quality attributes from
vague or non-actionable ones.

« Evaluate Al-generated nonfunctional test
ideas for relevance.

 Prioritize quality attributes based on risk
and impact.

« Design tests that validate selected quality
attributes.

Exercise

Use Al to improve loosely-defined
nonfunctional requirements, make them
testable, and identify techniques for testing
these requirements.



Al for Software Testing

14 PMIPDUs | 14 IIBA CDUs

Content:
Module 9 — Test Strategy and Planning

Individual tests do not add up to a test
strategy. Learn how Al can help you to make
deliberate testing choices aligned with
business goals and risk. Use a Test Strategy
canvas to outline and plan a comprehensive
testing strategy. See how Al can draft inputs
and challenge assumptions, while
responsibility for prioritization and trade-offs
remains with the tester.

Objectives

« Distinguish between test cases and test
strategy.

« |dentify key risks and priorities that drive
testing decisions.

« Use planning frameworks to structure
testing efforts.

« Evaluate Al-generated strategy inputs
critically.

« Align test strategy with business and
technical goals.

Exercise

Use Al to create a Test Strategy Canvas—a
single concise view of the overall approach to
testing a full application.

Module 10 — Bug Analysis and Reporting

Bug reports are both technical findings and
communication artifacts. Practice using Al to
analyze bug reports to distinguish real failures
from expected behavior or misunderstandings,
assess impact and risk, and communicate
findings effectively to different audiences.
Although Al is used to assist with
summarization and categorization, learn to
evaluate where this help improves clarity and
where it distorts meaning or priority.

Objectives

« Distinguish bugs from misunderstandings of
expected behavior and feature changes.

« Analyze bugs to identify impact, risk, and
root causes.

« Evaluate Al-generated bug summaries and
categorizations critically.

« Decide when Al-assisted analysis adds
value and when it does not.

« Write clear, actionable bug reports for
different stakeholders.

Exercise

Ask Al chatbots to come up with list of potential
bugs, different kinds of risks, and a set of
sample bug reports. Then take a list of actual
bug reports and have the Al analyze and
classify these into an actionable report.



Al for Software Testing

14 PMIPDUs | 14 IIBA CDUs

Content:
Module 11 — Test Automation

Automating test execution promises to make it
easier and cheaper to run large test suites
more frequently—a practice essential to
modern agile development and DevOps
practices.

Explore the different kinds of automated tests.
See how Al can generate automated tests for
different levels and architectures. Use Al to
evaluate existing systems’ suitability for
automation and to check and improve existing
automation suites.

Objectives

« Evaluate whether a test scenario is
suitable for automation.

« |dentify prerequisites for effective
automation that Al cannot infer.

« Critically assess Al-generated automation
scripts.

« Recognize common automation anti-
patterns and risks.

« Decide when manual or exploratory testing
is the better option.

Exercise

While no programming or automation tool
experience is necessary, get a sense of the
power of automated testing by observing
demonstrations of different kinds of
automation. Ask Al chatbots for advice about
automating different test scenarios.

Module 12 - Integrating Al Into Your Testing

So what does all of this mean? Now it all comes
together. You'll assess where Al can add the
most value in your own practice, plan small
experiments, and design an ethical framework
for responsible adoption. The focus is on
practical next steps—how to pilot, measure, and
lead change as an Al-empowered tester.

Objectives

« Identify high-potential areas to pilot Al
within your testing processes.

« Plan change-management and
measurement strategies for Al adoption.

« Develop an ethical framework for
responsible use of Al tools and data.

« Create a personal or team roadmap for
integrating Al as a productivity and quality
multiplier.

Exercise

Reflect on your own testing practice and
identify areas where Al could realistically add
value. Use Al to brainstorm small, low-risk pilot
experiments and success measures.

Lecturing is kept to the minimum necessary where most of the learning is achieved by applying the practices and techniques in group
exercises. Our LiveOnline delivery is over three days (each four and a half hours in duration). The instructor is 100% live and interaction
and learning objectives are the same as our in-person classes with the added benefit of being able to take this course from your home,
your office or your home office. Since this class is delivered over half-days it allows for greater flexibility and leaves you with time each

day for other work or activities.



